Pressure-Driven Cooperative Spin-Crossover, Large-Volume Collapse, and Semiconductor-to-Metal Transition in Manganese(II) Honeycomb Lattices.
نویسندگان
چکیده
Spin-crossover (SCO) is generally regarded as a spectacular molecular magnetism in 3d4-3d7 metal complexes and holds great promise for various applications such as memory, displays, and sensors. In particular, SCO materials can be multifunctional when a classical light- or temperature-induced SCO occurs along with other cooperative structural and/or electrical transport alterations. However, such a cooperative SCO has rarely been observed in condensed matter under hydrostatic pressure (an alternative external stimulus to light or temperature), probably due to the lack of synergy between metal neighbors under compression. Here, we report the observation of a pressure-driven, cooperative SCO in the two-dimensional (2D) honeycomb antiferromagnets MnPS3 and MnPSe3 at room temperature. Applying pressure to this confined 2D system leads to a dramatic magnetic moment collapse of Mn2+ (d5) from S = 5/2 to S = 1/2. Significantly, a number of collective phenomena were observed along with the SCO, including a large lattice collapse (∼20% in volume), the formation of metallic bonding, and a semiconductor-to-metal transition. Experimental evidence shows that all of these events occur in the honeycomb lattice, indicating a strongly cooperative mechanism that facilitates the occurrence of the abrupt pressure-driven SCO. We believe that the observation of this cooperative pressure-driven SCO in a 2D system can provide a rare model for theoretical investigations and lead to the discovery of more pressure-responsive multifunctional materials.
منابع مشابه
Pressure-driven metal-insulator transition in hematite from dynamical mean-field theory.
The local density approximation combined with dynamical mean-field theory is applied to study the paramagnetic and magnetically ordered phases of hematite Fe2O3 as a function of volume. As the volume is decreased, a simultaneous first-order insulator-metal and high-spin to low-spin transition occurs close to the experimental value of the critical volume. The high-spin insulating phase is destro...
متن کاملPressure-Driven Spin Crossover Involving Polyhedral Transformation in Layered Perovskite Cobalt Oxyfluoride
We report a novel pressure-driven spin crossover in layered cobalt oxyfluoride Sr2CoO3F with a distorted CoO5 square pyramid loosely bound with a fluoride ion. Upon increasing pressure, the spin state of the Co(III) cation gradually changes from a high spin state (S = 2) to a low spin state (S = 0) accompanied by a anomalously large volume contraction (bulk modulus, 76.8(5) GPa). The spin state...
متن کاملGiant pressure-induced volume collapse in the pyrite mineral MnS2.
Dramatic volume collapses under pressure are fundamental to geochemistry and of increasing importance to fields as diverse as hydrogen storage and high-temperature superconductivity. In transition metal materials, collapses are usually driven by so-called spin-state transitions, the interplay between the single-ion crystal field and the size of the magnetic moment. Here we show that the classic...
متن کاملSpin State Control of the Perovskite Rh/Co Oxides
We show why and how the spin state of transition-metal ions affects the thermoelectric properties of transition-metal oxides by investigating two perovskite-related oxides. In the A-site ordered cobalt oxide Sr3YCo4O10.5, partial substitution of Ca for Sr acts as chemical pressure, which compresses the unit cell volume to drive the spin state crossover, and concomitantly changes the magnetizati...
متن کاملVortex lattice transitions in cyclic spinor condensates.
We study the energetics of vortices and vortex lattices produced by rotation in the cyclic phase of F=2 spinor condensates. In addition to the familiar triangular lattice predicted by Tkachenko for 4He, many more complex lattices appear in this system as a result of the spin degree of freedom. In particular, we predict a magnetic-field-driven transition from a triangular lattice to a honeycomb ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 138 48 شماره
صفحات -
تاریخ انتشار 2016